earticle

논문검색

Oral Session B-1: Vision Applications

DeepGeo3D: An Integrated Deep Learning and Geospatial Framework for Automated 3D Environment Reconstruction from Satellite Imagery and OpenStreetMap Data

초록

영어

This study will concentrate on developing an automated process for creating a 3D environment utilizing satellite imagery, a segmentation algorithm, and geospatial data. Traditional methods for crafting a 3D environment primarily rely on manually sculpting terrain and generating 3D objects, which requires substantial time, effort, and resources from the developer. We aim to introduce a system that combines satellite images, digital terrain models, and building segmentation through Python programming to create 3D environments in Unreal Engine. The implementation includes a Python Tkinter GUI for data collection and preprocessing, Mask-RCNN for building segmentation, and the use of Open Street Map (OSM) data to utilize data availability and visualization of data. The system will be evaluated by generating 3D scene environments using satellite image input and incorporating geospatial datasets to analyze and measure the visual similarities between actual and generated 3D environments.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
A. Satellite Imagery in 3D Environment Generation
B. Building Segmentation using Deep Learning
C. Building Reconstruction
III. METHODOLOGY
A. Data Acquisition and Pre-processing
B. Digital Terrain Model (DTM) and Height Data
C. Texture Mapping
D. Procedural Generation in Unreal Engine
E. Automation Procedure
IV. RESULTS AND DISCUSSION
V. CONCLUSION AND FUTURE WORK
VI. ACKNOWLEDGMENT
REFERENCES

저자정보

  • Ruben D. Espejo Jr. Department of Artificial Intelligence Convergence Engineering Changwon National University Changwon City, South Korea
  • Beomseok Oh Department of Applied Artificial Intelligence Seoul National University of Science and Technology Seoul, Republic of Korea
  • Joongrock Kim Department of Artificial Intelligence Convergence Engineering Changwon National University Changwon City, South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.