earticle

논문검색

학술연구

YOLO와 EasyOCR을 혼합한 차량 번호 기반 겸용 차량 분류 연구

원문정보

A Study on Vehicle Number-Based Combined Vehicle Classification Using YOLO and EasyOCR

이경수, 임병철, 윤득선

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

The lane designation and the bus-only lane system for traffic speed and road safety are difficult to crack down on, and for this purpose, crackdown methods using image recognition technologies are being studied. Existing studies require continuous learning or additional equipment, and it is difficult to classify combined vehicles such as vans and pickup trucks. Therefore, in this study, YOLO and EasyOCR were mixed to classify combined vehicles through vehicle type symbols. For combined vehicles, higher accuracy was shown than classification using YOLO. Due to the nature of Hangul, the accuracy was slightly lowered because the OCR was not accurately recognized, but if it is used with the existing YOLO classification, high accuracy of crackdown will be possible.

목차

Abstract
1. 서론
2. 연구 내용
2.1 차량 번호판 조사
2.2 데이터 수집
2.3 연구 방법
2.4 연구 결과
3. 결론
후기
References

저자정보

  • 이경수 K. S. Lee. Member, Researcher, Automotive Semiconductor and Sensor R&D Dept., Korea Automotive Technology Institute
  • 임병철 B. C. Yim. Member, Senior Researcher, Automotive Semiconductor and Sensor R&D Dept., Korea Automotive Technology Institute
  • 윤득선 D. S. Yun. Member, Executive Principal Researcher, Automotive Semiconductor and Sensor R&D Dept., Korea Automotive Technology Institute

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.