원문정보
초록
영어
Recently, many companies improving their management performance by building a powerful brand value which is recognized for trademark rights. However, as growing up the size of online commerce market, the infringement of trademark rights is increasing. According to various studies and reports, cases of foreign and domestic companies infringing on their trademark rights are increased. As the manpower and the cost required for the protection of trademark are enormous, small and medium enterprises(SMEs) could not conduct preliminary investigations to protect their trademark rights. Besides, due to the trademark image search service does not exist, many domestic companies have a problem that investigating huge amounts of trademarks manually when conducting preliminary investigations to protect their rights of trademark. Therefore, we develop an intelligent similar trademark search model to reduce the manpower and cost for preliminary investigation. To measure the performance of the model which is developed in this study, test data selected by intellectual property experts was used, and the performance of ResNet V1 101 was the highest. The significance of this study is as follows. The experimental results empirically demonstrate that the image classification algorithm shows high performance not only object recognition but also image retrieval. Since the model that developed in this study was learned through actual trademark image data, it is expected that it can be applied in the real industrial environment.
한국어
전 세계적으로 온라인 상거래 시장 규모가 성장함에 따라 국제 및 국내 기업의 상표권이 침해되는 사례가 빈번하게 발생하고 있다. 다양한 연구 및 보고서에 따르면, 해외 기업 또는 개인이 국내 기업의 상표권을 침해한 사례와, 국내 기업 간 발생하는 상표권 분쟁 사례가 증가하고 있는 것으로 나타나고 있으며, 특허청의 보고서에 따르면 기업의 규모가 작을수록 상표보호를 위한 사전 예방활동을 수행하지 않는다고 응답한 비율이 높은 것으로 나타났다. 이러한 문제는 선등록 상표에 대한 사전조사 또는 자사의 상표보호를위해 소요되는 인력과 비용이 원인인 것으로 판단된다. 한편, 국내에서 선등록상표에 대한 사전조사를 위해 상용되는 서비스를 살펴보면 상표 이미지를 활용한검색 서비스를 제공하고 있지 않은 상황이다. 이로 인해 국내 대다수의 기업은 자사의 상표 보호 및 선등록 상표에 대한 사전조사 수행 시 방대한 양의 선등록된 상표를 수작업으로 조사해야하는 문제가 발생한다. 따라서 본 연구에서는 기업의 상표권 보호 및 선등록 상표에 대한 사전조사 수행 시 투입되는 인력 및비용절감과, 국내외에서 발생하고 있는 상표권 침해 문제를 해결하기 위해 합성곱 신경망 기법을 활용한지능형 유사 상표 검색 모델을 개발하고자 한다. 지적 재산권 전문가가 선정한 테스트 데이터를 활용하여지능형 유사 상표 검색 모델의 정확도를 측정한 결과 ResNet V1 101의 성능이 가장 높게 나타났다. 해당결과를 통해 이미지 분류 알고리즘이 단순한 사물 인식 분야뿐만 아니라 이미지 검색 분야에서도 높은 성능을 나타낸다는 것을 실증적으로 입증했으며, 본 연구는 실제 상표 이미지 데이터를 활용했다는 측면에서실제 산업 환경에서 활용성이 높을 것으로 사료된다.
목차
Ⅰ. 서론
Ⅱ. 선행연구 고찰
1. 상표권 침해 관련 선행연구
2. 합성곱 신경망 모형에 관한 선행연구
Ⅲ. 연구절차
1. 데이터 정제
2. 데이터 라벨링 및 증폭
3. 모델의 학습 및 검증
4. 모델 테스트
Ⅳ. 실증분석 및 결과
1. 데이터 수집
2. 데이터 정제
3. 데이터 라벨링 및 증폭
4. 지능형 유사 상표 검색 모델 학습 및 검증
5. 지능형 유사 상표 검색 모델 테스트
Ⅴ. 결론
참고문헌
Abstract