원문정보
초록
영어
In this paper, a real-time Human-Computer Interaction (HCI) based on the hand data glove and K-NN classifier for gesture recognition is proposed. HCI is moving more and more natural and intuitive way to be used. One of the important parts of our body is our hand which is most frequently used for the Interaction in Digital Environment and thus complexity and flexibility of motion of hands are the research topics. To recognize these hand gestures more accurately and successfully data glove is used. Here, gloves are used to capture current position of the hand and the angles between the joints and then these features are used to classify the gestures using K-NN classifier. The gestures classified are categorized as clicking, rotating, dragging, pointing and ideal position. Recognizing these gestures relevant actions are taken, such as air writing and 3D sketching by tracking the path helpful in virtual augmented reality (VAR). The results show that glove used for interaction is better than normal static keyboard and mouse as the interaction process is more accurate and natural in dynamic environment with no distance limitations. Also it enhances the user’s interaction and immersion feeling.
목차
1. Introduction
2. Proposed Research
3. Gesture Definition
3.1 Clicking Operation
3.2 Dragging
3.3 Rotating
3.4 Pointing
4. Implementing and Tuning
4.1 Mapping
4.2 Applications
5. Conclusion
6. Future Work
References
