earticle

논문검색

혼합 데이터 마이닝 기법인 불일치 패턴 모델의 특성 연구

원문정보

Characteristics on Inconsistency Pattern Modeling as Hybrid Data Mining Techniques

허준, 김종우

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

PM (Inconsistency Pattern Modeling) is a hybrid supervised learning technique using the inconsistence pattern of input variables in mining data sets. The IPM tries to improve prediction accuracy by combining more than two different supervised learning methods. The previous related studies have shown that the IPM was superior to the single usage of an existing supervised learning methods such as neural networks, decision tree induction, logistic regression and so on, and it was also superior to the existing combined model methods such as Bagging, Boosting, and Stacking. The objectives of this paper is explore the characteristics of the IPM. To understand characteristics of the IPM, three experiments were performed. In these experiments, there are high performance improvements when the prediction inconsistency ratio between two different supervised learning techniques is high and the distance among supervised learning methods on MDS (Multi-Dimensional Scaling) map is long.

목차

Abstract
 1. 서 론
  1.1 논문의 배경
  1.2 연구 목적과 논문 구성
 2. 관련 연구
 3. 불일치 패턴 모델 알고리즘
 4. 실험의 설계
  4.1 실험의 기본 설계
  4.2 실험에 사용된 데이터
 5. 실험결과
  5.1 데이터 특성에 따른 불일치 패턴 모델 성능 향상 실험 결과
  5.2 불일치 패턴 모델 내부사용 기법에 따른 위치도 분석 결과
  5.3 목표 변수 불균형 해소 후 불일치 패턴모델의 변화 실험 결과
 6. 결론
 참고문헌

저자정보

  • 허준 Joon Hur. SPSS Korea (주)데이타솔루션
  • 김종우 Jong Woo Kim. 한양대학교 경영대학 경영학부 교수

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 5,200원

      0개의 논문이 장바구니에 담겼습니다.