원문정보
초록
영어
Web personalization has focused on extracting web pages interesting to users, to help users searching wanted information efficiently on the web. One of the main methods to achieve this is by using queries, links and users' preferred words in the pages. In this study, we surveyed from the web users the features of pages that are considered important to themselves in selecting web pages. The survey results showed that the content of the pages is the most important. However, images and readability of the page are rated as high as the content for some users. Based on this result, we present a method for maintaining relative weights of major page features differently in the profile for each user, which is used for personalizing web search results. Performance of the proposed personalization method is analyzed to prove its superiority such that it yields as much as 1.5 times higher rate than the system utilizing both queries and preferred words and about 2.3 times higher rate than a generic search engine.
한국어
웹 상에서 사용자가 원하는 정보를 효율적으로 검색하는데 도움을 주기 위하여 웹 개인화는 사용자에게 흥미있는 웹 문서들을 추출해내는데 초점을 두고 있다. 이를 실현하기 위한 주요 방법들 중 하나는 문서에 포함된 질의어, 링크 및 사용자의 선호어를 이용하는 것이다. 본 연구에서는 이들 요소 외에 사용자들이 웹문서를 선택할 때 중요하게 생각하는 문서 특성들을 설문을 통하여 조사하였다. 설문 결과 문서의 내용이 가장 중요한 특성이었으나, 일부 사용자들에게는 문서에 포함된 이미지와 가독성도 내용과 마찬가지로 중요하게 간주되었다. 이를 바탕으로 각 사용자를 위한 문서의 주요 특성들의 상대적 가중치를 프로필에 유지 관리하고, 검색 결과의 개인화에 반영하는 방안을 제시한다. 제안한 개인화 방법의 성능을 분석한 결과, 일반 검색 엔진에 비해 최대 약 2.3배의 성능 향상을 보였고, 사용자 질의어와 선호어를 모두 이용하여 검색 결과를 산출하는 방법보다 약 1.5배의 성능 향상을 나타내어 그 우수성을 입증하였다.
목차
ABSTRACT
1. 서론
2. 개인화된 웹 검색 시스템
2.1 시스템 구조
2.2 알고리즘
3. 실험 연구
3.1 실험 배경
3.2 설문 조사 결과
3.3 성능 비교
4. 결론
참고문헌