earticle

논문검색

SPR Imaging-Based Monitoring of Caspase-3 Activation

초록

영어

The activation of caspase-3 plays an important role in the apoptotic process. In this study, we describe a novel method by which caspase-3-dependent proteolytic cleavage can be monitored, using a surface plasmon resonance (SPR) imaging protein chip system. To the best of our knowledge, this is the first report regarding the SPR imaging-based monitoring of caspase-3 activation. In order to evaluate the performance of this protocol, we constructed a chimeric caspase-3 substrate (GST:DEVD:EGFP) comprised of glutathione-S transferase (GST) and enhanced green fluorescent protein (EGFP) with a specialized linker peptide harboring the caspase-3 cleavage sequence, DEVD. Using this reporter, we assessed the cleavage of the artificial caspase-3 substrate in response to caspase-3 using an SPR imaging sensor. The purified GST:DEVD:EGFP protein was initially immobilized onto a glutathionylated gold chip surface, and subsequently analyzed using an SPR imaging system. As a result, caspase-3 activation predicated on the proteolytic properties inherent to substrate specificity could be monitored via an SPR imaging system with a detection performance similar to that achievable by the conventional method, including fluorometric assays. Collectively, our data showed that SPR imaging protein chip system can be effectively utilized to monitor the proteolytic cleavage in caspase-3, thereby potentially enabling the detection of other intracellular protease activation via the alteration of the protease recognition site in the linker peptides.

저자정보

  • Kyoungsook PARK BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology
  • Junhyoung AHN BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology
  • So Yeon YI BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology
  • Bong Hyun CHUNG BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology
  • Moonil KIM BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.