earticle

논문검색

유전자 알고리즘을 이용한 사례기반추론 시스템의 최적화: 주식시장에의 응용

원문정보

Optimization of Case-based Reasoning Systems using Genetic Algorithms: Application to Korean Stock Market

김경재, 안현철, 한인구

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Case-based reasoning (CBR) is a reasoning technique that reuses past cases to find a solution to the new problem. It often shows significant promise for improving effectiveness of complex and unstructured decision making. It has been applied to various problem-solving areas including manufacturing, finance and marketing for the reason. However, the design of appropriate case indexing and retrieval mechanisms to improve the performance of CBR is still a challenging issue. Most of the previous studies on CBR have focused on the similarity function or optimization of case features and their weights. According to some of the prior research, however, finding the optimal k parameter for the k-nearest neighbor (k-NN) is also crucial for improving the performance of the CBR system. In spite of the fact, there have been few attempts to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors to combine. This study applies the novel approach to Korean stock market. Experimental results show that the GA-optimized k-NN approach outperforms other AI techniques for stock market prediction.

목차

I. 서론
 II. 문헌 연구
  2.1 사례기반추론
  2.2 GA를 이용한 사례기반추론의 최적화
  2.3 k-NN 결합 유사사례 개수의 최적화
 III. k-NN의 파라미터 k에 대한 GA 최적화
 IV. 실험 설계
  4.1 실험 데이터
  4.2 실험 설계 및 실험용 시스템 개발
 V. 실험 결과
 VI. 결론
 참고문헌

저자정보

  • 김경재 Kyoung-Jae Kim. 동국대학교 경영정보학과
  • 안현철 Hyunchul Ahn. 한국과학기술원 테크노경영대학원
  • 한인구 Ingoo Han. 한국과학기술원 테크노경영대학원

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,600원

      0개의 논문이 장바구니에 담겼습니다.