원문정보
Adaptive and Cost-Efficient Build-order Selection Scheme for Improving Performance of Artificial Intelligence on StarCraft
초록
영어
StarCraft was made by 'Blizzard Entertainment' in 1998, It is an on-line and off-line real-time strategy simulation game. In these days, human players' level is extremely improved in quality while the artificial intelligence is not changed after StarCraft was made.
Several efforts have been made to solve the problem. However, the existing artificial intelligence improving methods used some 'cheat' codes or very simple and fixed-strategy. At the consequence, the modified artificial intelligence is not clever to adapt many kinds of strategies from the enemies. In this paper, we present build-order decision scheme for improving performance of artificial intelligence on StarCraft. The proposed scheme selects the cost-efficient build-order based on the difference between the player and the enemies' strategies. Using this can improve the artificial intelligence in terms of both quality and performance. Our experimental results show that the proposed scheme can significantly improve performance compared with the original artificial intelligence on StarCraft.
한국어
스타크래프트는 1998년도에 미국 ‘블리자드’ 사에서 제작한 실시간 전략 시뮬레이션 게임이다. 이 게임의 등장 이후로, 게임을 즐기는 사용자들의 수준은 본 게임이 등장한 이후로 월등히 향상되었으나, 본 게임의 컴퓨터 인공지능의 수준에는 변화가 없었다. 이 문제를 해결하기 위해, 몇 가지 연구 노력이 진행되어왔다. 그러나 기존의 인공지능 성능 향상 기법들은 치트 (cheat) 등을 사용하거나, 상당히 획일화된 전략 전술로 인해, 컴퓨터 인공지능의 한계가 쉽게 드러나는 단점이 있었다. 본 논문에서는 보다 적응성 있고 비용 효율적인 빌드 오더 선택 기법을 제안한다. 제안한 기법은 상대적인 전략 전술의 차이를 바탕으로, 현 상황에서 발생할 수 있는 적의 공격에 대하여 비용 효율적인 대응 방안을 선택한다. 이를 사용하면 컴퓨터 인공지능의 질과 성능의 측면에서 향상을 이룰 수 있다. 제안한 기법과 기존 스타크래프트 인공지능의 상대적 성능 평가를 통해, 제안한 기법을 사용한 인공지능이 월등히 뛰어난 성능을 보임을 확인한다.
목차
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 비용 효율적인 빌드 오더 선택 기법
1. 스타크래프트 시스템 모델
2. 전략 전술과 빌드 오더의 관계
3. 빌드 오더 선택 시의 고려 사항
4. 적응성 있는 빌드 오더의 선택
Ⅳ. 제안 기법의 구현
1. 구현을 위한 개발 환경
2. 구현된 코드의 예
Ⅴ. 성능 평가
1. 마이크로 벤치마크
2. 매크로 벤치마크
VI. 결론 및 향후 연구
참고문헌