earticle

논문검색

Research on Domain Self‐Aadaptation of Chinese‐English EBMT

원문정보

Hongfei Jiang, Muyun Yang, Tiejun Zhao

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

The example‐based machine translation system in the specific domain can be developed in a short time with a high translation quality. Though an EBMT system can be transplanted to a new
domain quickly, when faces to the need for the multi‐doamins translation, its advantage in domain
adaptability will be affected. In order to solve this problem a new domain sensative EBMT translation model is proposed. Through combining the text‐classsify technique, the proposed EBMT will judge the input text and then select the most appropriate example base for the following translations. The experiments showed that this method can improve the performance of the EBMT system and meet the need for Olympicsoriented multi‐domains translations in some
extents

목차

Abstract
 1. Introduction
 2. Classfication based domain adaptation forEBMT
  2.1. What is EBMT
  2.2. Auto Word Alignment Based EBMT
  2.3. Text‐classify based EBMT domain selfadaptingframework
 3. Experiments and Discussion
 4. Conclusion
 References

저자정보

  • Hongfei Jiang Research Center for Language Technology, School of Computer Science and Technology, Harbin Institute of Technology
  • Muyun Yang Research Center for Language Technology, School of Computer Science and Technology, Harbin Institute of Technology
  • Tiejun Zhao Research Center for Language Technology, School of Computer Science and Technology, Harbin Institute of Technology

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 3,000원

      0개의 논문이 장바구니에 담겼습니다.