earticle

논문검색

Hybrid Intelligence Approaches for Designing a Dynamic Financial Time-series Predictive Model Based on Web-Architecture Home Finance Learning Environment

초록

영어

This study proposes design concepts for a comprehensive home financial learning environment that individual investors can use as a reference in establishing web-based learning and investment platforms. This study also introduces a hybrid approach that demonstrates a data mining function of the financial learning environment. Known as Fuzzy BPN, this approach is comprised of backpropagation neural network (BPN) and fuzzy membership function. This membership function takes advantage of the nonlinear features of artificial neural networks (ANNs) and the interval values as a means of overcoming the inadequacy of single-point estimation of ANNs. Based from these characteristics, a dynamic and intelligent time-series forecasting system will be developed for practical financial predictions. In addition to this, the experimental processing can demonstrate the feasibility of applying the hybrid model-Fuzzy BPN. The empirical results of the study show that Fuzzy BPN provides an alternative data mining tool for financial learning environment to investment forecasting.

목차

Abstract
 1. Introduction of Home Financial Investment
  1.1. IHFILE System Framework
  1.2. Web-Based Learning Environment
  1.3. Module Design
  1.4. The Virtual Trading Center
  1.5. Financial Market Scenario Generator
 2. Preliminary Description of Dynamic Financial Time-series PredictiveModel for Exchange Rate forecast
 3. Artificial Neural Network and GARCH Model
  3.1. Artificial Neural Network Model
  3.2. GARCH Model
 4. The Hybrid Methodology and Research Design
  4.1. Fuzzy BPNs
  4.2. Data and Experimental Design
 5. Empirical Results
  5.1 BPNs Model
  5.2. GARCH Model
  5.3. Forecasting Performance
 6. Conclusion
 7. References

저자정보

  • Hsio-Yi Lin Department of Finance, Ching-Yun University, Jung-Li, Taiwan 320
  • Hsiao-Ya Chiu Department and Graduate Institute of Information Managment, Yu Da College of Business, MiaoLi, Taiwan 361
  • Chieh-Chung Sheng Department and Graduate Institute of Information Managment, Yu Da College of Business, MiaoLi, Taiwan 361
  • An-Pin Chen Institute of Information Management, National Chiao-Tung University, HsinChu, Taiwan 300

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.