earticle

논문검색

영어학습자 글쓰기의 수준 유지형 GPT 기반 텍스트 증강과 디코딩 온도 조건의 효과 — 실증 연구

원문정보

Level-Preserving GPT-Based Text Augmentation for EFL Learner Writing: Effects of Decoding Temperature

김정아

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study examines whether ChatGPT-based text augmentation can preserve learner writing levels and how decoding temperature influences augmentation quality and stability. We augmented 141 English texts written by Korean EFL university students (CEFR B1–B2) under five temperature settings (0.3, 0.5, 0.7, 0.8, 0.9), producing 695 candidate texts. Augmentation quality was assessed using a composite hybrid score integrating level preservation, lexical diversity, and structural stability. For each source text, the highest-scoring candidate was selected, yielding 139 original–augmented text pairs for subsequent analyses. Results show that the augmented texts achieved partial level preservation: they largely maintained relative proficiency ordering and macro-level text scale (e.g., word and sentence counts), while permitting limited shifts in local lexical and syntactic features. Across conditions, temperature 0.5 showed the highest selection frequency and the lowest variability, indicating the most consistent balance between expressive diversity and structural stability for level-preserving augmentation.

목차

Ⅰ. 서론
Ⅱ. 선행연구 및 관련 이론
A. 영어 학습자 글쓰기 능숙도와 생성형 AI 기반 작문 지원
B. 공학적 텍스트 증강과 합성 데이터 생성 연구
C. 교육적 맥락에서의 텍스트 증강과 연구 필요성
Ⅲ. 연구 방법 (Methods)
A. 연구 참여자 및 자료 수집
B. 수준 유지형 텍스트 증강 설계
C. 온도 조건 설정 및 최적 온도 탐구
D. 통계 분석
Ⅳ. 결과 및 논의
A. 수준 유지형 텍스트 증강의 성립 여부
B. 최적 온도 탐색과 Hybrid score
참고문헌
부록(Appendices)
Abstract

저자정보

  • 김정아 Jeonga Kim. 강사, 전남대학교

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.