earticle

논문검색

<학술연구>

머신러닝 기반 천연고무 자기유변고무의 전단계수 예측

원문정보

Machine Learning Approach for Predicting Shear modulus of Natural Rubber Magnetorheological Elastomers

정운창

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study compares the shear behavior of anisotropic magnetorheological elastomers (MREs) using natural rubber (NR) and silicone rubber (Si) as matrices. The effects of magnetic flux density and compressive pre-stress on the shear modulus were experimentally investigated. Results showed that silicone-based MREs exhibited a 10–20% higher magnetorheological effect than NR-based ones due to stronger particle–matrix bonding and stable chain alignment under magnetic fields. In contrast, NR-based MREs showed greater stiffness variation under compressive stress, attributed to strain-hardening and volumetric constraint effects. These findings indicate that matrix selection significantly governs the magneto-mechanical response: silicone MREs are suitable for precision control and sensing, while NR MREs perform better in high-stress damping systems. This study provides fundamental insight for tailoring MREs according to design requirements.

목차

Abstract
1. 서론
2. 이론적 배경(Theoretical Background)
2.1 기존 모델링 접근법
2.2 데이터 기반 접근법
3. 실험 데이터 및 전처리(Experimental Data and Preprocessing)
3.1 실험 구성 및 데이터 수집
3.2 데이터 전처리 및 가공
3.3 데이터 특성 분석
4. 머신러닝 기반 예측 결과
4.1 Random Forest 모델 및 학습 결과
5. 결론
References

저자정보

  • 정운창 Jeong Un-Chang. Member, School of ICT, Robotics & Mechanical Engineering, Hankyong National University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.