earticle

논문검색

Oral Session B-1: Vision Applications

Reference-Guided Automatic Mask Generation with SAM and CLIP for Metaverse Content Editing

초록

영어

We introduce a reference-guided, fully automatic mask generation framework that does not rely on textual prompts or manual annotations. The approach first uses Segment Anything Model (SAM) with automatic mask generation (AMG) to produce multiple mask candidates. Each candidate is then scored against the reference image in the CLIP semantic space. A robust Top-K selection with prior reweighting favors plausible regions and suppresses small, off-center, or abnormal aspect-ratio masks. Finally, morphological closing and Gaussian feathering yield refined hard/soft masks that can be directly consumed by inpainting or blending modules. Experiments on a COCO subset and our in-house images show strong performance on segmentation metrics (IoU, Dice) and perceptual measures (FID, LPIPS, CLIP-Score), while avoiding the cost of manual masks. This enables streamlined asset preparation for metaverse content creation, immersive AR/VR scenes, and large-scale digital twins where zero-interaction mask generation is crucial

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. METHODOLOGIES
A. Overall Framework
B. Candidate Mask Generation (SAM-AMG)
C. Mask–Reference Similarity (CLIP Matching)
D. Top-K Robust Selection and Union
E. Prior Reweighting
F. Methodologies
G. Extensions and Robustness
IV. EXPERIMENTS
A. Evaluation Setup
B. Quantitative Results
C. Qualitative Results
V. CONCLUSION
Acknowledgment
REFERENCES

저자정보

  • Xingshi Gan Department of Computer Science & Engineering Sejong University Seoul, Republic of Korea
  • Wenqi Zhang Department of Computer Science & Engineering Sejong University Seoul, Republic of Korea
  • L. Minh Dang Department of Computer Science & Engineering Sejong University Seoul, Republic of Korea
  • Yue Zhang Department of Computer Science & Engineering Sejong University Seoul, Republic of Korea
  • Yanan Wang Department of Computer Science & Engineering Sejong University Seoul, Republic of Korea
  • Seongwook Lee Department of Artificial Intelligence Data Science Sejong University Seoul, Republic of Korea
  • Hyeonjoon Moon Department of Computer Science & Engineering Sejong University Seoul, Republic of Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.