earticle

논문검색

제미나이와 구글은 인간번역 문체에 얼마나 가까워졌나 : 5개 언어, 5개 머신러닝 활용연구

원문정보

How close are Gemini and Google to human translation style : A five-algorithm machine learning analysis across five languages.

정혜연, 김선경, 김해연, 류두진, 유은미, 최재걸, 최혜림

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study quantitatively examines stylistic differences between human and machine translation in literary texts. A parallel corpus was constructed from five source languages-German, Arabic, Indonesian, Japanese, and Chinese-each translated into Korean by professional human translators and two machine translation systems, Google Translate and Gemini. Using five machine learning algorithms (Decision Tree, Random Forest, XG-Boost, t-SNE, and PCA), we analyzed a range of stylometric features to determine the separability of human and machine outputs. Our results show that human and machine translations are highly distinguishable, with classification models achieving over 90%accuracy. Gemini’s stylistic profile aligned more closely with that of Google Translate than with human translators. The analysis revealed comma ratio as the strongest discriminator, followed by sentence count and pronoun ratio. These findings provide empirical evidence of a persistent stylistic gap between human and machine translation in the literary domain and identify specific linguistic features that mark this divide.

목차

Abstract
I. 들어가는 말
II. 문체
III. 번역의 문체
IV. 기계번역의 문체
IV. 실험
1. 연구질문
2. 분석자료
3. 분석방법
V. 결과 및 분석
1. 실험 결과
2. 결과 분석
VI. 결론
참고문헌

저자정보

  • 정혜연 Chung, Hye-yeon. 한국외국어대학교
  • 김선경 Kim, Sun-gyung. 한국외국어대학교
  • 김해연 Kim, Hae-yeon. 한국외국어대학교
  • 류두진 Ryu, Doo-jin. 서울외국어대학원대학교
  • 유은미 Yu, Eun-me. 한국외국어대학교
  • 최재걸 Choi, Jae-keol. 한국외국어대학교
  • 최혜림 Choi, Hye-rim. 한국외국어대학교

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 6,700원

      0개의 논문이 장바구니에 담겼습니다.