earticle

논문검색

Beyond the Numbers : How Multi-Agent Compassionate AI Can Foster Fairer Financial Inclusion

초록

영어

Integrating Large Language Models (LLMs) into high-stakes evaluations like hiring and loans poses dual challenges: reducing algorithmic bias and embedding human compassion. We propose an AI evaluation framework grounded in the four-factor model of organizational justice, restructured into two dimensions: Structural Justice (procedural and distributive fairness) and Interactional Justice (interpersonal and informational compassion). Our modular, multi-agent system includes a Criteria Generator for fair rubric design and an Application Evaluator with two LLM agents—a “just bureaucrat” scoring structural fairness and a “compassionate communicator” scoring interactional fairness. These qualitative scores integrate with quantitative predictions through a Budget-Aware Fair Ranker to produce optimized outcomes. This framework offers a blueprint for AI systems that balance fairness with empathy, advancing beyond bias mitigation to foster just and compassionate decision-making in automated evaluations.

목차

Abstract
1. Introduction
2. Theoretical Background: Organizational Justice “Four-Factor” Model
2.1 Systematic Justice: Distributive Justice and Procedural Justice
2.2 Interactional Justice: Interpersonal Justice and Informational Justice
3. Model Design
3.1 Criteria Generator
3.2 Application Evaluator
3.3 Budget-Aware Fair Ranker
4. Future Works
Acknowledgments
References

저자정보

  • Gaon Kim KAIST 경영공학부
  • Woojeong Yoo KAIST 경영공학부
  • Donghyuk Shin KAIST 경영공학부

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.