earticle

논문검색

Detecting and Identifying Fake and Extreme Reviews Using Machine Learning and Natural Language Processing Techniques

초록

영어

With social media growing fast, user-generated content (UGC) has become a key factor in influencing how consumers decide what to buy, especially in the travel and hospitality sector. But there are a lot of fake and extreme reviews, which are making it hard for customers to make the right choice and making competition in the market unfair. The present study focuses on YouTube, a platform with high global activity, and proposes a systematic solution that combines Natural Language Processing (NLP) and machine learning methods (e.g., VADER Sentiment Analysis, Support Vector Machine SVM, and LDA Topic Modelling) for identifying and filtering fake and extreme remarks in hotel reviews. This approach has been shown to enhance the automation and precision of review screening processes. Furthermore, it provides a theoretical foundation and practical methodologies to improve the online information ecology, thereby enhancing the quality of user decision-making.

목차

Abstract
Introduction
Methods
Research Methodology
Data Analysis and Results
Conclusions
Implication
Limitation and Future research direction
References

저자정보

  • 가중정 순천향대학교 경영학과
  • 최재원 순천향대학교

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.