earticle

논문검색

국제 무역 환경의 수요 예측 : ARIMA와 GRU기반 비교 분석

원문정보

Demand Forecasting in the International Trade Environment : A Comparative Analysis Based on ARIMA and GRU

정동균, 이종화

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Data-driven decision-making is essential in the Fourth Industrial Revolution. In particular, accurate demand forecasting plays a critical role in optimizing supply chains and improving responsiveness in the global trade environment. This study aims to compare the forecasting performance of two models: ARIMA (Auto-Regressive Integrated Moving Average), a traditional time series method, and GRU (Gated Recurrent Unit), a deep learning-based approach. Using real-world demand data from the automobile parts industry, both models were evaluated based on MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Squared Error), and RMSLE (Root Mean Squared Log Error). The results show that the GRU model consistently outperforms the ARIMA model, especially for highly volatile and irregular (lumpy) demand data. These findings suggest the practical applicability of GRU in demand forecasting for industries dealing with irregular patterns, and highlight the potential of combining traditional and deep learning methods for improved forecasting accuracy in international trade settings.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구 방법
Ⅳ. 실험 및 연구 결과
Ⅴ. 결론
참고문헌

저자정보

  • 정동균 Jung, Dong Kun. 부경대학교 경영컨설팅 협동과정수료
  • 이종화 Lee, Jong Hwa. 동의대학교 데이터미래가치연구소

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.