earticle

논문검색

Oral Session Ⅵ 차세대컴퓨팅 전 분야

뇌파로부터 이미지 생성을 위한 CLIP 기반 EEG 인코딩에 관한 예비 연구

원문정보

CLIP-based EEG Encoding for Brainwave-driven Image Generation : A Preliminary Study

Gyu Seok Lee, Jörg Stadler, André Brechmann, Wonsang You

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Recent advances in generative modeling have sparked growing interest in image generation from electroencephalography (EEG) signals. A critical yet technically challenging component of this task lies in effectively encoding EEG signals to capture semantic information corresponding to visual stimuli. In this preliminary study, we investigate the feasibility of employing CLIP (Contrastive Language–Image Pre-training), a state-of-the-art pretrained multimodal contrastive learning model, to semantically align EEG representations with image and caption feature vectors. Our analysis explores the potential of CLIP-based EEG encoding as a foundation for brain-to-image generation systems.

목차

Abstract
1. 서론
2. 방법
2.1 EEG로부터 특징을 추출하기 위한 모델
2.2 CLIP을 활용한 EEG-Image 의미적 정렬
3. 실험방법
3.1 데이터셋
3.2 실험 환경
4. 실험 결과
5. 결론
Acknowledgement
참고문헌

저자정보

  • Gyu Seok Lee Dept. of AI Biomedical Engineering, Sun Moon University
  • Jörg Stadler Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, Germany
  • André Brechmann Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, Germany
  • Wonsang You Dept. of AI Biomedical Engineering, Sun Moon University/AIIP Lab, Dept. of Information and Communication Engineering, Sun Moon University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.