earticle

논문검색

Oral Session Ⅴ 정보보호

암시적 연계 탐지를 통한 프라이버시 위험 평가 : 언어 모델의 희소한 PII 기억을 중심으로

원문정보

Probing Implicit Linkage : Assessing Privacy Risks from Sparse PII Memorization in Language Models

Jinhui Zuo, 이석원

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Complex Artificial Intelligence (AI) models pose significant privacy risks as they can potentially memorize sensitive training data. Knowledge probing was proposed to quantify the sensitive information memorized by a trained model. However, in large text datasets, Personally Identifiable Information (PII) is often discrete and sparsely distributed. Consequently, probing isolated PII instances and their limited context fails to effectively determine if the model has learned connections between related PII fragments. To address this limitation, we propose a knowledge probing method specifically designed for scenarios with sparse PII. Our method efficiently identifies and collects PII in the given dataset. It then uses this set for targeted probing to evaluate the model's recall accuracy concerning this information. Experiments demonstrate that our framework effectively reveals a model's capacity to implicitly link related, sparse PII fragments.

목차

Abstract
1. Introduction
2. Related works
3. Our proposal
4. Evaluation
4.1. Results
5. Conclusion
Acknowledgement
References

저자정보

  • Jinhui Zuo 아주대학교 인공지능학과
  • 이석원 Seok-Won Lee. 아주대학교 소프트웨어학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.