earticle

논문검색

Oral Session II - II : Medical AI

Development of a Functional Electrical Stimulation Device for Finger Flexion Control with Adaptive Electrode Selection using Reinforcement Learning

초록

영어

This paper introduces a system that uses Functional Electrical Stimulation (FES) for finger flexion control aimed rehabilitation for stroke patients. To address the variability in electrode between patients, Reinforcement Learning is applied together with a switching network that allows automatic electrode selection. This results in an adaptable system that does not require rigorous searching of the patient’s optimal stimulation points. Data that supports the differences in the stimulation location for individuals as well as the ability of the system to converge automatically to a stimulation point is presented.

목차

Abstract
I. INTRODUCTION
II. FES REHABILITATIVE DEVICE SYSTEM
A. Stimulation Signal Generation and Electrode Selection Switching
B. IMU-based Feedback System
C. Reinforcement Learning based Electrode Selection System
III. DATA COLLECTION AND TESTING PROTOCOLS
IV. RESULTS AND DISCUSSIONS
A. Variability of Electrode Pair Locations in Finger Flexion over time
B. Electrode Matrix Displacement Effects
C. Initial Conditions and Convergence
V. SUMMARY
REFERENCES

저자정보

  • Luis Gerardo Canete, Jr. Department of Computer Engineering University of San Carlos Cebu City, Philippines
  • Clyde Matthew Condor Department of Computer Engineering University of San Carlos Cebu City, Philippines

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.