earticle

논문검색

Poster Session I : Next Generation Computing Applications I

Embedding-based anomaly detection method considering PLC control logic structure

초록

영어

Anomaly detection systems for Industrial Control System (ICS) cybersecurity are designed to identify irregularities in network packets or operational data. However, they cannot detect attacks like Stuxnet, which physically injects malicious control logic. While existing studies on control logic modulation address this issue, they rely on separate storage and produce false positives. To overcome these limitations, this paper proposes an anomaly detection method that embeds PLC control logic, preserving its structure. By training the model on this embedded control logic, it learns to detect anomalies effectively. Experiments using the PLC control logic from a power plant's water treatment system confirmed that the proposed method successfully detects anomalous control logic.

목차

Abstract
I. INTRODUCTION
II. BACKGROUND AND RELATED WORKS
A. Background
B. Related works
III. PLC CONTROL LOGIC EMBEDDING AND ANOMALY DETECTION
A. Overview
B. Control logic IL Code Conversion
C. Control Logic Embedding
D. Control Logic Learning and Anomaly Detection
IV. EXPERIMENT AND EVALUATION
A. Experimental Setting
B. Dataset Description
C. Experimental Setup
D. Control Logic Anomaly Detection Experiment
E. Comparative study
V. CONCLUSION AND FUTURE WORK
ACKNOWLEDGMENT
REFERENCES

저자정보

  • Ju Hyeon Lee dept. Information Security Gachon University
  • Seungho Jeon dept.Computer Engeneering (Smart Security) Gachon University
  • Jung Taek Seo dept.Computer Engeneering (Smart Security) Gachon University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.