earticle

논문검색

초급 화재조사관의 감식 능력 향상을 위한 인공지능 현미경 측정 방법 최적화

원문정보

Optimization of AI Microscope Measurement Methods for Enhancing the Diagnostic Capabilities of Junior Fire Investigators

최복무, 홍순문

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study focuses on enhancing the diagnostic capabilities of junior fire investigators through the optimization of AI microscope measurement methods for identifying wire arc melting marks. A total of 33 wire samples collected from actual fire scenes were analyzed using three distinct imaging scenarios (S1, S2, and S3) to evaluate the most reliable method. The S1 scenario, which involved capturing the wire’s side with the widest distribution of melting marks, achieved the highest concordance rate of 90.9% with metallographic analysis. In contrast, S2 and S3 scenarios recorded lower concordance rates of 51.5% and 39.4%, respectively. Statistical analysis using ANOVA revealed significant differences among the methods (F = 9.80, p < 0.00014), with post-hoc tests confirming the superior accuracy of the S1 approach. These findings suggest that AI microscopes can effectively support junior fire investigators by improving diagnostic accuracy and reducing reliance on subjective judgment.

목차

Abstract
1. 서론
1.1 연구 배경
1.2 연구의 필요성
2. 본론
2.1 이론적 배경
2.2 실증 분석
3. 결론
참고문헌

저자정보

  • 최복무 Bok Moo Choi. 전북소방본부
  • 홍순문 Sun Mun Hong. 군산소방서

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,900원

      0개의 논문이 장바구니에 담겼습니다.