earticle

논문검색

<학술연구>

CopulaGAN과 Isolation Forests를 활용한 우리나라 근로자의 이직 의도 예측 모델링

원문정보

Predictive Modeling for Employee Turnover Intention in South Korea Using CopulaGAN and Isolation Forests

변해원

초록

영어

This study developed a model to predict employee turnover intention using data from the 2022 Korean Labor & Income Panel Study (KLIPS) with 2471 participants. CopulaGAN and Isolation Forests were employed for data augmentation and variable importance. A logistic regression model using the augmented data achieved an accuracy of 0.80, precision of 0.60, recall of 0.72, and an F1-score of 0.65. Key variables included Job Satisfaction, Wage Satisfaction, Work Hours, Job Stability, and Job-Related Training. The study highlights the potential of these techniques for enhancing turnover prediction and aiding proactive HR strategies.

목차

Abstract
1. Introduction
2. Methods
2.1. Data collection
2.2. Data Preprocessing
2.3. Addressing Data Imbalance
2.4. Detailed Steps of the Algorithm
2.5. Developing and Evaluating the Prediction Model
3. Results
4. Discussion
5. Conclusion
References

저자정보

  • 변해원 Haewon Byeon. Dept. of AI-Software, Inje University, South Korea

참고문헌

자료제공 : 네이버학술정보

    ※ 기관로그인 시 무료 이용이 가능합니다.

    • 4,000원

    0개의 논문이 장바구니에 담겼습니다.