earticle

논문검색

<학술연구>

기계학습과 SMOTEENN(Synthetic Minority Oversampling Technique with Edited Nearest Neighbors)을 활용한 우리나라 임금근로 여성의 이직의도 예측 모델링

원문정보

Development of a Prediction Model for Turnover Intentions among Female Wage Workers in South Korea Using Machine Learning and SMOTEENN

변해원

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study examines career trajectories among women with career breaks, using data from the 2019 National Survey of Women on Career Breaks (n=1,138). The data underwent preprocessing, including outlier detection, feature scaling, and class imbalance correction with SMOTEENN. Three machine learning models were evaluated, with the Random Forest model achieving the best performance. Key predictors included flexible leave policies, social insurance, remote work options, and job security. The findings highlight the importance of supportive organizational policies in retaining female employees. Future research should explore longitudinal impacts and additional variables like organizational culture.

목차

Abstract
1. Introduction
2. Materials & Methodology
2.1. Data Source
2.2 Data Cleaning and Preprocessing
2.3 Outlier Detection and Removal
2.4 Feature Scaling and Transformation
2.5 Handling Class Imbalance
2.6 Feature Selection
2.7 Boxplots of numerical features against the target variable
3. Model Training & Analysis
3.1 Model Evaluation
3.2 Results
4. Discussion
References

저자정보

  • 변해원 Haewon Byeon. Dept. of AI-Software, Inje University, South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.