원문정보
초록
영어
The heart is an important organ in the circulatory system, which pumps blood to supply oxygen and nutrients to the body and remove waste products from metabolism. The heart forms the cardiovascular system with the arterial and venous systems, making cardiovascular health a vital factor. Crunch mode is a term used to describe periods of intense, prolonged work aimed at completing a project before a deadline or achieving an important goal. However, working continuously in this state can have serious health consequences, including the risk of heart disease. Early recognition of warning signs is key to minimizing the serious effects of the disease. Therefore, when unusual symptoms occur, a timely medical examination will help detect, diagnose, and treat them early, limiting dangerous complications. In this paper, we focus on the early prediction of stroke risk by applying advanced machine learning and deep learning techniques. We apply machine learning and deep learning models and combine ensemble learning methods to assess the risk of heart disease. The data source used in the paper is an open dataset containing reliable physiological profiles of patients, which helps to increase the accuracy of predicting heart disease problems and supports effective prevention.
목차
Ⅰ. Introduction
Ⅱ. Related Research
Ⅲ. Proposal and Implementation of Research Model
1. Big Dataset
2. Data Pre-processing
3. Classification Algorithm
Ⅳ. Results
Ⅴ. Conclusions
References