earticle

논문검색

Convergence of Internet, Broadcasting and Communication

Aligning AI Readiness and Sharing Digital Equity Efficiencies: plan for Smart City

초록

영어

This study explores the significance of AI-driven smart cities and their geopolitical implications, focusing on efficient smart economies, social and environmental connectivity, and sustainability. France is leading in AI development and adoption within Europe, possessing the necessary infrastructure and technology for smart city implementation, yet it must address social inequality and the digital divide. Japan is leveraging AI for smart city development to tackle its aging population, excelling in technology innovation and infrastructure, but it faces challenges in social acceptance and data privacy. Ireland, as a European hub for major IT companies, is well-positioned for AI smart city construction, though it must overcome issues like housing shortages and infrastructure expansion. The Netherlands must address social conflicts and housing shortages caused by high population density and increasing immigration. For successful AI smart city development, it is crucial to integrate immigrants, expand housing, and create economic opportunities. South Korea's major platforms like Naver and Kakao, are poised to play a central role in the AI smart city era, leveraging their vast data analytics capabilities, robust telecommunications infrastructure, and strong user base to enhance global competitiveness.

목차

Abstract
1. Introduction
2. Prior studies
2.1 Power and Finance in AI-Centered Cities
2.2 The Need for Urban AI-Based Systems
3. Research Design
3.1 Analysis of Changing the Urban Sharing Platform (Community Personalization) Structure
3.2 AI-Powered Selective Cities in the United States
3.3 Geopolitical Conformity and Urban Development by AI coupling
3.4 Globalization of Cities: Issues in European Shared Mobility Systems (France)
3.5 Immigration and Social Integration Issues in the Dutch Smart City Context
3.6 Geopolitical Importance of AI SNS Platforms (Naver's Challenges: The Line-Yahoo Situation)
3.7 Solving AI-Based Problems in Taiwan's Urban Social Structure
3.8 Ireland’s Case Study on Discrepancy Between GDP and Actual Income
4. Empirical analysis
4.1 Lasso regression analysis
4.2 Path analysis
5. Conclusion
References

저자정보

  • Dae-Sung Seo Professor, Department of Paideia, Sungkyul University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.