원문정보
Prediction Algorithm of Solar Energy Generation for Improving Energy Self-Sufficiency in Aged Buildings
초록
영어
This study aims to develop a prediction algorithm that can predict solar power generation using only the location information of buildings, and to improve the expected effects of green remodeling for improving building energy efficiency and building energy self-sufficiency in aged buildings. As the results of this study, the range of the reliability verification of the prediction algorithm(R2 value) was 0.80-0.96 for the summer season (June-August) and the building energy self-sufficiency rates of the seven target sites were calculated to be 46%-60%. Through these results, this prediction algorithm were verified to be useful for predicting the effects of green remodeling.
한국어
본 연구는 건물의 위치 정보만으로 태양광 발전을 예측할 수 있는 알고리즘을 개발하여 노후건축물을 대 상으로 건물에너지 효율성 향상을 위한 그린리모델링 기대효과 및 건물에너지 자립률 향상을 목표로 한다. 이를 위해, 기존 문헌에서의 태양광 발전 모델과 천공청명도 및 직산분리 방정식 등을 다중 회귀분석식으로 결합한 예 측 알고리즘을 개발하고, 테스트베드를 활용한 실증실험 데이터와의 검증을 통해 예측 알고리즘의 신뢰성을 검증 하였다. 예측 알고리즘의 신뢰성 검증결과, 회귀식의 설명력을 나타내는 R2값의 범위가 하절기(6월-8월) 기준 0.80-0.96으로 높은 예측정확도를 확보하였으며, 7곳 대상지의 건물에너지 자립률은 46%-60%로 산출되어 본 수 식이 그린리모델링 기대효과 예측 시 유용할 것으로 기대된다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 태양광 발전량 예측 알고리즘 개발
2.1 천공청명도 산정
2.2 수평면 일사량 산출
2.3 경사면 일사량 산출
2.4 태양광 발전량 예측
Ⅲ. Test-bed 실증
3.1 Test-bed 개요
3.2 Data 실증
Ⅳ. 실증대상지 검증
4.1 대상지 선정
4.2 건물에너지 요구량 산정
4.3 에너지자립률 평가
Ⅴ. 결론
REFERENCES
