원문정보
초록
한국어
We fabricate high-entropy alloy (HEA) Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 superconducting (SC) thin films via a pulsed laser deposition method. Two targets are prepared using arc melting, each followed by sintering at different temperatures: 550°C and 700°C for 12 hours. The films, HEA550 and HEA700, are deposited on c-cut Al2O3 substrates at a substrate temperature of 520°C, using the targets sintered at 550°C and 700°C, respectively. The SC transition temperature (Tc) of HEA700 is 6.88 K, slightly higher than that of HEA550 (= 6.27 K). Both films exhibit similar upper critical field (Hc2) at 0 K, with 11.34 T for HEA550 and 11.40 T for HEA700. Notably, HEA700 exhibits a large critical current density (Jc) of approximately 4.4 MA/cm2 and 3.5 MA/cm2 at 2.0 K and 4.2 K, respectively, accompanying by a predominance of normal point pinning. These results indicate that the targets prepared by arc melting are beneficial for achieving a large Jc in HEA SC thin films, thus providing new avenues for improving SC critical properties of HEA thin films for their practical applications.
목차
1. INTRODUCTION
2. EXPERIMENTAL METHODS
3. RESULTS AND DISCUSSION
4. CONCLUSION
ACKNOWLEDGMENTS
REFERENCES
