earticle

논문검색

Session 1 : 박사과정 컨소시엄

Forecasting Returns Using Image-Based Convolutional Neural Networks : Evidence from Korea

초록

영어

This study employs a machine learning-based approach to identify and predict stock market trends using a convolutional neural network (CNN) to the Korean stock market. Building on the methodology introduced in Jiang et al. (2023), we transform historical price and volume data into chart images and utilize CNN to extract patterns predictive of stock returns. Our findings demonstrate that this image-based model can predict the future returns, also in the Korean stock market. Notably, we observe high short-term predictive accuracy, particularly over weekly horizons, which facilitates profitable investment strategies. This study represents the first application of a chart image-based deep learning model to the Korean stock market, contributing new insights into the potential of deep learning techniques in financial market predictability.

목차

Abstract
1. Introduction
2. Data and methodology
2.1. Data
2.2. Convolution Neural Network (CNN)
2.3. Variables Construction
3. Empirical analysis
3.1. Short-horizon (Weekly) Portfolio Performance
3.2. Long-horizon (Monthly/Quarterly) Portfolio Performance
4. Additional Analysis
4.1. Correlation with Other Return Predictors?
4.2. Logistic Regression
4.3. Effect of Stock Size
5. Conclusion
References
Appendix
Figure
Table

저자정보

  • Jin-Gyu Jeong 정진규. College of Business, KAIST, 85 Hoegiro, Dongdaemoon-gu, Seoul
  • Suk-Joon Byun 변석준. College of Business, KAIST, 85 Hoegiro, Dongdaemoon-gu, Seoul
  • Donghoon Kim 김동훈. College of Business, KAIST, 85 Hoegiro, Dongdaemoon-gu, Seoul

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 7,900원

      0개의 논문이 장바구니에 담겼습니다.