earticle

논문검색

학술연구

고용 빅데이터에서 결과 변수의 계층 불균형 문제를 해결하기 위한 조건부 표 형식의 생성적 적대적 네트워크(GAN)의 응용

원문정보

Application of Conditional Tabular Generative Adversarial Networks (GAN) for Addressing Class Imbalance in Nationwide Employment Big Data

변해원

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study investigates using Conditional Tabular Generative Adversarial Networks (CT-GAN) to generate synthetic data for turnover prediction in large employment datasets. The effectiveness of CT-GAN is compared with Adaptive Synthetic Sampling (ADASYN), Synthetic Minority Over-sampling Technique (SMOTE), and Random Oversampling (ROS) using Logistic Regression (LR), Linear Discriminant Analysis (LDA), Random Forest (RF), and Extreme Learning Machines (ELM), evaluated with AUC and F1-scores. Results show that GAN-based techniques, especially CT-GAN, outperform traditional methods in addressing data imbalance, highlighting the need for advanced oversampling methods to improve classification accuracy in imbalanced datasets.

목차

Abstract
1. Introduction
2. Related works
3. Materials and Methods
3.1. Imbalance Ratio (IR)
3.2. Random Oversampling (ROS)
3.3. Synthetic Minority Over-Sampling Technique (SMOTE)
3.4. B-SMOTE
3.5. Adaptive Synthetic Sampling (ADASYN)
3.6. Conditional GAN (CGAN)
3.7. Conditional Tabular GAN (CT-GAN)
3.8. Modeling
3.9. Data source
3.10. Experimental design
3.11. Performance Evaluation Methods and Metrics
4. Results
5. Discussion
6. Conclusions
References

저자정보

  • 변해원 Haewon Byeon. Department of AI-Software, Inje University, South Korea.

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,900원

      0개의 논문이 장바구니에 담겼습니다.