earticle

논문검색

학술연구

TabTransformer와 조건부 GAN 알고리즘을 활용한 우리나라 대졸자 취업 만족도 예측 모델의 개선을 위한 데이터 증강 기법 연구

원문정보

Applying TabTransformer and Conditional GAN Algorithms for Enhancing Job Satisfaction Prediction of South Korean College Graduates

변해원

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study integrates TabTransformer and CTGAN for predicting job satisfaction among South Korean college graduates. TabTransformer handles complex tabular data relationships with self-attention, while CTGAN generates high-quality synthetic samples. The combined approach achieves an accuracy of 0.85, precision of 0.83, recall of 0.82, F1-score of 0.82, and an AUC of 0.88. Cross-validation confirms the model's robustness and generalizability with a mean accuracy of 0.85 and a standard deviation of 0.008. The integration of TabTransformer and CTGAN enhances predictive accuracy and model generalizability, providing valuable insights for employment policy and research.

목차

Abstract
1. Introduction
2. Related works
3. Materials and Methods
3.1. Data Preparation
3.2. Feature Extraction using TabTransformer
3.3. Data Augmentation using CTGAN
3.4. Model Training with Augmented Data
3.5. Final Classification Model Construction and Evaluation
3.6. Dataset
4. Results and Performance Evaluation
4.1. Experimental Setup
4.2 Evaluation Metrics
4.3. Experimental Results
4.4. Accuracy
4.5. Precision
4.6. Recall
4.7. F1-score
4.8. Area Under the ROC Curve (AUC)
4.9. Cross-Validation
5. Discussion
6. Conclusions
References

저자정보

  • 변해원 Haewon Byeon. Department of AI-Software, Inje University, South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,300원

      0개의 논문이 장바구니에 담겼습니다.