earticle

논문검색

<학술연구>

Deep Autoencoder 알고리즘에 기반한 기계설비 기술자의 정신건강 예측 시스템

원문정보

Predictive System for Mental Health of Machine Operators Based on Deep Autoencoder Model

변해원

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study explores the use of a Deep Autoencoder model to predict depression among plant and machine operators, utilizing data from the Korean National Health and Nutrition Examination Survey (KNHANES, n=3,852). The Deep Autoencoder model outperformed the Logistic Regression, Naive Bayes, XGBoost, and LightGBM models, achieving an accuracy of 86.5%. Key factors influencing depression included work stress, exposure to hazardous substances, and ergonomic conditions. The findings highlight the potential of the Deep Autoencoder model as a robust tool for early identification and intervention in workplace mental health.

목차

Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Subject
2.2. Data Collection
2.3. Input Variables
2.4. Data Preprocessing
2.5. Machine Learning Models
2.6. Deep Autoencoder Model
2.7. Model Training and Evaluation
2.8. Feature Importance
3. Results
3.1. Descriptive Statistics
3.2. Model Performance
3.3. Model Performance Comparison
3.4. Feature Importance
3.5. Feature Importance Analysis
4. Discussion
5. Discussion
References

저자정보

  • 변해원 Haewon Byeon. Department of AI-Software, Inje University, South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.