earticle

논문검색

<학술연구>

Semi-supervised MarginBoost를 이용한 기능 · 설비 · 기계분야 근로자의 업무상 손상 예측 시스템

원문정보

Identifying Determinants of Occupational Injuries Among Plant and Machine Operators Using Semi-supervised MarginBoost

변해원

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study examines factors influencing occupational injuries among plant and machine operators using the Semi-supervised MarginBoost algorithm. Data from the 2007-2009 Korean National Health and Nutrition Examination Survey (KNHANES) were analyzed, covering 4,062 employed participants. The MarginBoost model achieved 84.3% accuracy, outperforming other models. Key factors identified included exposure to hazardous substances, ergonomic conditions, and psychosocial stress. The findings emphasize the need for targeted interventions to enhance workplace safety and offer a robust predictive tool for the effective management of occupational health.

목차

Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Input Variables
2.4. Data Preprocessing
2.5. Machine Learning Models
2.6. MarginBoost Algorithm
2.7. Model Training and Evaluation
2.8. Feature Importance
3. Results
3.1 Health-Related Characteristics
3.2. Work Environment Characteristics
3.3. Occupational Injury Rates
3.4. Model Performance
3.5. Feature Importance
4. Discussion
References

저자정보

  • 변해원 Haewon Byeon. Department of AI-Software, Inje University, South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.