earticle

논문검색

Technology Convergence (TC)

SOC Prediction of Lithium-ion Batteries Using LSTM Model

원문정보

초록

영어

This study proposes a deep learning-based LSTM model to predict the state of charge (SOC) of lithium-ion batteries. The model was trained using data collected under various temperature and load conditions, including measurement data from the CS2 lithium-ion battery provided by the University of Maryland College of Engineering. The LSTM model effectively models temporal patterns in the data by learning long-term dependencies. Performance evaluation by epoch showed that the predicted SOC improved from 14.8400 at epoch 10 to 12.4968 at epoch 60, approaching the actual SOC value of 13.5441. The mean absolute error (MAE) and root mean squared error (RMSE) also decreased from 0.9185 and 1.3009 at epoch 10 to 0.2333 and 0.5682 at epoch 60, respectively, indicating continuous improvement in predictive performance. This study demonstrates the validity of the LSTM model for predicting the SOC of lithium-ion batteries and its potential to enhance battery management systems.

목차

Abstract
1. INTRODUCTION
2. RESEARCH MODEL
3. STRUCTURAL DESIGN OF LSTM MODEL
4. IMPLEMENTATION AND RESULTS
5. CONCLUSION
REFERENCES

저자정보

  • Sang-Hyun Lee Associate Prof., Dept. of Computer Engineering, Honam University, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.