원문정보
Analysis for File Access Characteristics of Mobile Artificial Intelligence Workloads
초록
영어
Recent advancements in artificial intelligence (AI) technology have led to an increase in the implementation of AI applications in mobile environments. However, due to the limited resources in mobile devices compared to desktops and servers, there is growing interest in research aimed at efficiently executing AI workloads on mobile platforms. While most studies focus on offloading to edge or cloud solutions to mitigate computing resource constraints, research on the characteristics of file I/O related to storage access in mobile settings remains underexplored. This paper analyzes file I/O traces generated during the execution of deep learning applications in mobile environments and investigates how they differ from traditional mobile workloads. We anticipate that the findings of this study will be utilized to design future smartphone system software more efficiently, considering the file access characteristics of deep learning.
한국어
최근 인공지능 기술의 발전으로 모바일 환경에서 AI 응용을 수행하는 사례가 늘고 있다. 하지만, 모바일 환경은 데스크탑이나 서버에 비해 자원이 제한적이므로 인공지능 워크로드를 모바일에서 효율적으로 수행하기 위한 연구가 최 근 주목받고 있다. 대부분의 연구는 컴퓨팅 자원의 제약을 해소하기 위한 엣지 또는 클라우드로의 오프로딩에 초점이 맞추어져 있으며, 스토리지 접근과 관련한 파일 입출력 특성에 관한 연구는 아직까지 널리 이루어지지 않고 있다. 본 논문에서는 모바일 환경에서 딥러닝 애플리케이션의 실행 시 발생하는 파일 입출력 트레이스를 분석하고, 기존 모바일 워크로드와의 차이점에 대해 분석한다. 본 논문의 분석 결과가 딥러닝의 파일 접근 특성을 고려하여 미래의 스마트폰 시스템 소프트웨어를 효율적으로 설계하는 데에 활용되기를 기대한다.
목차
Abstract
I. 서론
II. 트레이스 수집 및 분석
III. 파일 블록의 편향도 분석
IV. 파일 블록의 재참조 가능성 분석
V. 결론
References