원문정보
초록
영어
In autonomous navigation systems, the need for fast and accurate image processing using deep learning and advanced sensor technologies is paramount. These systems rely heavily on the ability to process and interpret visual data swiftly and precisely to ensure safe and efficient navigation. Despite the critical importance of such capabilities, there has been a noticeable lack of research specifically focused on ship image classification for maritime applications. This gap highlights the necessity for more in-depth studies in this domain. In this paper, we aim to address this gap by presenting a comprehensive comparative study of ship image classification using two distinct neural network models: the Feedforward Neural Network (FNN) and the Convolutional Neural Network (CNN). Our study involves the application of both models to the task of classifying ship images, utilizing a dataset specifically prepared for this purpose. Through our analysis, we found that the Convolutional Neural Network demonstrates significantly more effective performance in accurately classifying ship images compared to the Feedforward Neural Network. The findings from this research are significant as they can contribute to the advancement of core source technologies for maritime autonomous navigation systems. By leveraging the superior image classification capabilities of convolutional neural networks, we can enhance the accuracy and reliability of these systems. This improvement is crucial for the development of more efficient and safer autonomous maritime operations, ultimately contributing to the broader field of autonomous transportation technology.
목차
1. Introduction
2. Background
3. Feedforward Neural Network and Convolutional Neural Network
3.1 Feedforward Neural Network
3.2 Convolutional Neural Network
4. Results
5. Conclusion
Acknowledgement
References
