원문정보
초록
영어
Old-growth mixed-conifer forests in Bhutan are characterized by remarkable tree species compositional heterogeneity. However, our knowledge of tree species assemblages and their structural attributes in these forests has been limited. Therefore, forest classification has been reliant on a single dominant species. This study aimed to distinguish tree species assemblages in an old-growth mixed conifer forest in Western Bhutan and to describe their natural compositional and stand structural characteristics. Furthermore, the regeneration status of species was investigated and the quantity and quality of accumulated coarse woody debris were assessed. Ninety simple random sampling plots were surveyed in the study site between 3,000 and 3,600 meters above sea level. Tree, standing deadwood, regeneration, and coarse woody debris data were collected. Seven tree species assemblages were distinguished by Hierarchical Cluster Analysis and Indicator Species Analysis, representing five previously undescribed tree species associations with unique set of consistent species. Principal Component Analysis revealed two transitional pathways of species dominance along an altitudinal gradient, highly determined by relative topographic position. The level of stand stratification varied within a very wide range, corresponding to physiognomic composition. Rotated-sigmoid and negative exponential diameter distributions were formed by overstorey species with modal, and understorey species with negative exponential distribution. Overstorey dominant species showed extreme nurse log dependence during regeneration, which supports the formation of their modal distribution by an early natural selection process. This allows the coexistence of overstorey and understorey dominant species, increasing the sensitivity of these primary ecosystems to forest management.
목차
Introduction
Materials and Methods
Study site
Data collection
Data analysis
Results
Classification of tree species assemblages in the study site
Compositional profile of distinguished tree species assemblages
Transitional pathways of species dominance
Structural parameters of distinguished tree species assemblages
Diameter distribution of identified tree species associations
Regeneration and shrub layer composition in distinguished tree species associations
Discussion
Tree species assemblages and associations in the study site
Structural characteristics of distinguished tree species assemblages
Regeneration and modal character of dominant species
Conclusion
Acknowledgements
References
