원문정보
Development of the self-diagnosis system for initial stage of developmental disability
초록
영어
Although developmental disabilities account for a relatively low number of the total number of disabilities, they are generally classified as severe disabilities considering the degree of disability. If these developmental disorders are discovered early, adaptability and early treatment efficiency can be improved, but most parents do not detect any signs from their children or miss the right time for treatment. In this paper, we conducted development of the developmental disorder diagnosis algorithm that can recognize hand-flapping, one of the early unusual behaviors of developmental disorders, for parents and early childhood care workers who cannot recognize signs of early developmental disorders based on specific behavioral characteristics as a pilot study. It was confirmed that the recognition area and fingers were accurately recognized, and the number of hand flapping was accurately counted. It is expected that research on algorithms that can diagnose various behavioral patterns will continue to be conducted and expanded all through algorithms advancement and expansion of functional performance using big data.
한국어
발달장애는 전체 장애인 수 중에 비교적 낮은 수치에 해당되지만 장애의 정도에서 전반적으로 중증 장애로 분 류되고 있다. 이러한 발달장애는 초기에 발견이 된다면 적응력과 초기 대응에 의한 치료 효과가 향상될 수 있지만, 대부분의 부모들은 자신의 아이에게서 징후를 발견하지 못하거나 치료시기를 놓치는 경우가 대다수이다. 본 논문에서는 특이적 행동특성을 기반으로 하는 초기 발달장애 징후를 객관적으로 볼 수 없는 부모나 유아기관 관 계자들을 위해 발달장애 초기 특이행동 중 손 퍼덕대기(Hand-Flapping)를 인식할 수 있는 발달장애 진단 알고리듬 개발의 선행연구를 수행하였다. 인지영역과 손가락을 정확하게 인식하여, 손퍼덕임 수를 정확하게 카운트하는 것을 확인할 수 있었다. 빅데이터를 활용한 알고리듬의 고도화 및 기능적 성능 확장을 통해 다양한 행동패턴의 진단이 가 능한 알고리듬 연구가 지속적으로 수행 및 확대될 것으로 전망된다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 시스템 구성 및 실험방법
Ⅲ. 결과 및 고찰
Ⅳ. 결론
References