earticle

논문검색

<학술연구>

TabNet-RUSBoost 하이브리드 모델을 이용한 산업재해 근로자의 직장 복귀 예측 : ICF 모델의 적용

원문정보

Predicting Return-to-Work Outcomes for Workers Injured in Industrial Accidents Using a TabNet-RUSBoost Hybrid Model : Incorporating the ICF Framework

변해원

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study aims to predict return-to-work outcomes for workers injured in industrial accidents using a TabNet-RUSBoost hybrid model. The study analyzed data from 1,383 workers who had completed recuperation. Key predictors identified include length of recuperation, disability grade, occupation activity, self-efficacy, and socioeconomic status. The model effectively addresses class imbalance and demonstrates superior predictive performance. These findings underscore the importance of a holistic approach, incorporating both medical and psychosocial factors.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
2.1 Comparative Models: Decision  Tree (CART), AdaBoost, RUSBoost, and TabNet
2.2 Data Preprocessing: Handling Missing Values
2.3 Feature Engineering
2.4 Model Training: Decision Tree (CART)
2.5 AdaBoost
2.6 RUSBoost with TabNet
2.7 TabNet
2.8 Hyperparameter Tuning
2.9 Model Evaluation
2.10 Data Source
2.11 Measurement
3. Results
3.1 Model Performance
3.2 Comparative Analysis
3.3 Feature Importance
3.4 Model Rovustness and Generalizability
4. Conclusion
References

저자정보

  • 변해원 Hae-Won Byeon . Department of AI-Software, Inje University, South Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.