earticle

논문검색

BERTopic을 활용한 텍스트마이닝 기반 인공지능 반도체 기술 및 연구동향 분석

원문정보

Topic Modeling on Patent and Article Big Data Using BERTopic and Analyzing Technological Trends of AI Semiconductor Industry

김현경, 이정훈, 강선구

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

The Fourth Industrial Revolution has spurred widespread adoption of AI-based services, driving global interest in AI semiconductors for efficient large-scale computation. Text mining research, historically using LDA, has evolved with machine learning integration, exemplified by the 2021 BERTopic technology. This study employs BERTopic to analyze AI semiconductor-related patents and research data, generating 48 topics from 2,256 patents and 40 topics from 1,112 publications. While providing valuable insights into technology trends, the study acknowledges limitations in taking a macro approach to the entire AI semiconductor industry. Future research may explore specific technologies for more nuanced insights as the industry matures.

목차

Abstract
1. Introduction
1.1 연구의 배경
1.2 연구의 목적
1.3 연구의 방법 및 범위
2. 이론적 배경
2.1 인공지능 반도체의 개념 및 기술에 대한 선행연구
2.2 정량 데이터를 통해 기술 동량을 파악한 선행연구
2.3 텍스트 마이닝 관련 기존 연구
3. 연구문제 및 방법
3.1 연구문제
3.2 연구 방법
4. 연구결과
4.1 인공지능 반도체 기술 토픽
4.2 인공지능 반도체 연구 토픽
5. 결론
5.1 연구의 시사점
5.2 연구 한계 및 제언
References
<부록>

저자정보

  • 김현경 Hyeonkyeong Kim. Manager, KT
  • 이정훈 Junghoon Lee. Professor, Graduate School of Information, Yonsei University
  • 강선구 Sunku Kang. Master student, IoT Service Convergence Graduate School of Information, Yonsei University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 6,000원

      0개의 논문이 장바구니에 담겼습니다.