원문정보
한국차세대컴퓨팅학회
한국차세대컴퓨팅학회 학술대회
The 7th International Conference on Next Generation Computing 2021
2021.11
pp.326-327
피인용수 : 0건 (자료제공 : 네이버학술정보)
초록
영어
Unsupervised Domain Adaptation of object detection can prevent performance degradation for new environment which does not include annotation We improved the performance by applying Pseudo label.
목차
Abstract
I. INTRODUCTION
II. RELATED WORK
A. Unsupervised Domain Adaptation
B. Pseudo Label
III. METHOD
A. Loss for pseudo label
B. Discriminator
IV. EXPERIMENTS
A. Implementation Details
B. Result
V. CONCULUSION
ACKNOWLEDGMENT
REFERENCES
I. INTRODUCTION
II. RELATED WORK
A. Unsupervised Domain Adaptation
B. Pseudo Label
III. METHOD
A. Loss for pseudo label
B. Discriminator
IV. EXPERIMENTS
A. Implementation Details
B. Result
V. CONCULUSION
ACKNOWLEDGMENT
REFERENCES
저자정보
참고문헌
자료제공 : 네이버학술정보
