earticle

논문검색

Poster Session I

Anomaly Prediction Model Using Warning Signs

초록

영어

Generators continue to deteriorate in performance due to aging and result in increased failure rates and reduced reliability. Therefore, studies are being conducted on anomaly prediction models for generator engines to prevent potential accidents during operation. However, there are problems in designing the models due to class imbalance and manual input of maintenance history. This study labels data from the time an anomaly occurs up to 60 minutes before the occurrence as anomalies to solve these problems. Data from the time an anomaly occurs up to 30 minutes before the occurrence were also added as derived variables to reflect the warning signs of anomalies in model training. The anomaly prediction models were created using engine log and maintenance history data and applying Random Forest(RF), eXtreme Gradient Boosting(XGB), Linear Support Vector Classifier(LSVC), and Deep Neural Networks(DNN) algorithms. The performance of the models was evaluated by F1-Score and Recall. XGB showed excellent performance in terms of F1-Score, and DNN in terms of Recall. As a result of comparing the F1-Scores to sort the optimal model for each system, XGB was optimal for systems 1, 2, and 4, and RF was optimal for systems 3 and 5. System 5 showed excellent performance when only the derived variable condition was applied, and the other systems showed excellent performance when applying the derived variable and labeling.

목차

Abstract
I. INTRODUCTION
II. RELATED WORKS
III. ANOMALY PREDICTION MODELS FOR ENGINES
IV. DATA
A. Data Description
B. Data Preprocessing
C. Labeling
D. Add Derived Variables
V. EXPERIMENTS
A. Anomaly Prediction Model
B. Performance Evaluation Metrics
C. Experiments and Results
D. Optimal Anomaly Prediction Model for Each System
VI. CONCLUSION
ACKNOWLEDGMENT
REFERENCES

저자정보

  • Yoojin Ha Departments of Computer Engineering Sejong University Seoul, KOREA
  • Won Hee Chung Departments of Computer Engineering Sejong University Seoul, KOREA
  • Xianghua Piao Departments of Computer Engineering Sejong University Seoul, KOREA
  • Yeong Hyeon Gu Departments of Computer Engineering Sejong University Seoul, KOREA
  • SEOGBONG JEON Departments of Computer Engineering Sejong University Seoul, KOREA
  • Seong Joon Yoo Departments of Computer Engineering Sejong University Seoul, KOREA

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      0개의 논문이 장바구니에 담겼습니다.