원문정보
Design and Implementation of Machine Learning System for Fine Dust Anomaly Detection based on Big Data
초록
영어
In this paper, we propose a design and implementation of big data-based fine dust anomaly detection machine learning system. The proposed is system that classifies the fine dust air quality index through meteorological information composed of fine dust and big data. This system classifies fine dust through the design of an anomaly detection algorithm according to the outliers for each air quality index classification categories based on machine learning. Depth data of the image collected from the camera collects images according to the level of fine dust, and then creates a fine dust visibility mask. And, with a learning-based fingerprinting technique through a mono depth estimation algorithm, the fine dust level is derived by inferring the visibility distance of fine dust collected from the monoscope camera. For experimentation and analysis of this method, after creating learning data by matching the fine dust level data and CCTV image data by region and time, a model is created and tested in a real environment.
한국어
본 논문은 빅데이터 기반 미세먼지 이상 탐지 머신러닝 시스템 설계 및 구현을 제안한다. 제안하는 시스템은 빅데이터로 구성된 미세먼지 및 기상 정보를 통해 미세먼지 대기환경지수를 분류하는 시스템이다. 이 시스템은 머신러닝 기반의 대기환경지수 분류 카테고리별 이상치에 따른 이상치 탐지 알고리즘 설계를 통해 미세먼지를 분류한다. 카메라에 서 수집된 영상의 심도 데이터는 미세먼지 농도에 따른 영상을 수집한 후 미세먼지 가시마스크를 생성합니다. 그리고 모노 심도 추정 알고리즘을 통한 학습 기반 핑거프린팅 기법으로 모노스코프 카메라에서 수집된 미세먼지의 가시거리를 추론하여 미세먼지 농도를 도출합니다. 본 방법의 실험 및 분석을 위해 미세먼지 농도 데이터와 지역별, 시간별 CCTV 영상 데이터를 매칭하여 학습 데이터를 생성한 후 모델을 생성하여 실제 환경에서 테스트한다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 빅데이터 기반 미세먼지 이상 탐지머신러닝 시스템 설계 및 구현
Ⅲ. 실험 결과
Ⅳ. 결론
References