피부질환 의료상담 챗봇 구현을 위한 사용자 질의문 패턴분석 연구


An Analysis of Linguistic Patterns in User Queries for Implementation of Medical Chatbots in Skin Disease Counseling Domain.

박온유, 남지순

피인용수 : 0(자료제공 : 네이버학술정보)



This research delves into linguistic patterns within a medical QA corpus focused on skin diseases. Our primary goal is to analyze these patterns and establish linguistic resources for the automated extraction of diagnostic information, notably disease and symptom expressions. A thorough examination of the corpus revealed three key linguistic patterns in user utterances: varied disease and symptom descriptions, specific query-related linguistic structures, and expressions giving supplementary background information. From these patterns, we classified 12 distinct query types. Furthermore, we identified three vital query-related expressions concerning skin diseases: WHAT, WHY, and HOW-CURE. These linguistic patterns were encapsulated using the Local Grammar Graph (LGG) schema, designed to efficiently produce training datasets for medical chatbots' Natural Language Understanding (NLU) modules. Validating our approach, a medical counseling chatbot named LIMA, trained using our dataset, achieved an F1-score of 0.908, underscoring the effectiveness and reliability of our proposed method.


1. 서론
2. 선행 연구
2.1. 의료 도메인 챗봇 관련 연구
2.2. 한국어 증상 표현 관련 연구
3. 의료상담 질의문 유형 및 패턴 분석
3.1. 의료상담 질의문의 의미적 특징
3.2. 의료상담 질의문의 형식적 구조
4. 질의유형별 언어자원 구축
4.1. 질병 표현 그래프 자원
4.2. 질의 화행 표현 그래프 자원
4.3. 부가 표현 그래프 자원
5. 성능 평가
6. 결론 및 향후 연구


  • 박온유 Onyu Park. 한국외국어대학교/대학원생
  • 남지순 Jeesun Nam. 한국외국어대학교/교수


자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 8,400원

      0개의 논문이 장바구니에 담겼습니다.