earticle

논문검색

인공지능 기반 객체 인식을 위한 최적 학습모델 구축 방안에 관한 연구

원문정보

A Study on How to Build an Optimal Learning Model for Artificial Intelligence-based Object Recognition

양환석

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

The Fourth Industrial Revolution is bringing about great changes in many industrial fields, and among them, active research is being conducted on convergence technology using artificial intelligence. Among them, the demand is increasing day by day in the field of object recognition using artificial intelligence and digital transformation using recognition results. In this paper, we proposed an optimal learning model construction method to accurately recognize letters, symbols, and lines in images and save the recognition results as files in a standardized format so that they can be used in simulations. In order to recognize letters, symbols, and lines in images, the characteristics of each recognition target were analyzed and the optimal recognition technique was selected. Next, a method to build an optimal learning model was proposed to improve the recognition rate for each recognition target. The recognition results were confirmed by setting different order and weights for character, symbol, and line recognition, and a plan for recognition post-processing was also prepared. The final recognition results were saved in a standardized format that can be used for various processing such as simulation. The excellent performance of building the optimal learning model proposed in this paper was confirmed through experiments.

한국어

4차 산업혁명으로 많은 산업 분야에 커다란 변화가 일어나고 있으며, 그중에서도 인공지능을 활용한 융합기술에 활 발한 연구가 진행되고 있다. 그중에서도 인공지능을 활용한 객체 인식과 인식 결과를 활용한 디지털 전환(Digital Transformation) 분야에서 그 요구가 나날이 증가하고 있다. 본 논문에서는 이미지내에 글자, 심볼, 선을 정확하게 인식 하고 인식 결과를 시뮬레이션에 활용할 수 있도록 표준화 포맷의 파일로 저장하기 위해 최적의 학습모델 구축 방법을 제안하였다. 이미지내 글자, 심볼, 선을 인식하기 위하여 인식 대상별 특성을 분석한 후 최적의 인식 기법을 선택하였 다. 그다음으로 인식 대상별 인식률을 향상시키기 위하여 최적의 학습 모델 구축 방안을 제안하였다. 글자, 심볼, 선 인 식의 순서와 가중치를 다르게 설정하여 인식 결과를 확인하였으며, 인식 후처리에 대한 방안도 마련하였다. 최종적인 인식 결과는 시뮬레이션 등 다양한 처리에 활용될 수 있는 표준화 포맷으로 저장하였다. 본 논문에서 제안한 최적의 학 습 모델 구축에 대한 우수한 성능은 실험을 통해 확인할 수 있었다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
2.1 CNN (Convolutional Neural Network)
2.2 YOLO(You Only Look Once)
2.3 LSTM(Long Short-Term Memory)
3. 인공지능 기반 최적 학습모델 구축
3.1 시스템 개요
3.2 객체 인식 최적 모델
4. 실험 및 결과
4.1 실험 환경
4.2 실험 결과
5. 결론
참고문헌

저자정보

  • 양환석 Yang Hwan Seok. 중부대학교/정보보호학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.