원문정보
초록
영어
Over the past decade, the exploration of high-temperature superconductivity and the discovery of a wide range of exotic superconducting states in Fe-based materials have propelled condensed matter physics research to new frontiers. These materials exhibit intriguing phenomena arising from their multiband electronic structure, strongly orbital-dependent effects, extremely small Fermi energy, electronic nematicity, and topological aspects. Among the various factors influencing their superconducting properties, high magnetic fields play a crucial role as a control knob capable of disrupting the subtle balance between the spin, charge, lattice, and orbital degrees of freedom, leading to the emergence of various exotic superconducting states. In this review, we provide an overview of the current understanding of the exotic superconducting states observed in Fe-based superconductors, with a particular focus on FeSe and Sr2VO3FeAs, under the influence of high magnetic fields.
목차
1. INTRODUCTION
2. Exotic Superconducting States in FeSe
3. Exotic Superconducting States in Sr2VO3FeAs
4. Conclusion
ACKNOWLEDGMENT
REFERENCES
