earticle

논문검색

Telecommunication Information Technology (TIT)

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

초록

영어

Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.

목차

Abstract
1. INTRODUCTION
2. Related Work
3. Methodology
3.1 Problem Definition
3.2 Framework
3.3 Graph Convolution Module
3.4 Temporal Convolution Module
3.5 LSTM Module
4.Experiments
4.1 Experimental Setup
4.2 Experimental Results
5.Conclusion
REFERENCES

저자정보

  • Huijuan Ding PhD Candidate, Dept. of Computer Information Engineering, Cheongju Univ., Korea
  • Giseop Noh Assistant Prof., Division of Software Convergence, Cheongju Univ., Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.