earticle

논문검색

이종 병렬설비에서 총납기지연 최소화를 위한 강화학습 기반 일정계획 알고리즘

원문정보

Scheduling Algorithm, Based on Reinforcement Learning for Minimizing Total Tardiness in Unrelated Parallel Machines

이태희, 김재곤, 유우식

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This paper proposes an algorithm for the Unrelated Parallel Machine Scheduling Problem(UPMSP) without setup times, aiming to minimize total tardiness. As an NP-hard problem, the UPMSP is hard to get an optimal solution. Consequently, practical scenarios are solved by relying on operator's experiences or simple heuristic approaches. The proposed algorithm has adapted two methods: a policy network method, based on Transformer to compute the correlation between individual jobs and machines, and another method to train the network with a reinforcement learning algorithm based on the REINFORCE with Baseline algorithm. The proposed algorithm was evaluated on randomly generated problems and the results were compared with those obtained using CPLEX, as well as three scheduling algorithms. This paper confirms that the proposed algorithm outperforms the comparison algorithms, as evidenced by the test results.

목차

Abstract
1. 서론
2. 문제 및 수리모형
2.1 문제 설명
2.2 수리모형
3. 기존 일정계획 알고리즘
3.1 우선순위 규칙
3.2 메타휴리스틱 알고리즘
4. 강화학습 기반 일정계획 알고리즘
4.1 강화학습 알고리즘
4.2 정책 네트워크
5. 성능 평가 실험
5.1 실험 방법
5.2 실험 결과
6. 결론
7. References

저자정보

  • 이태희 Tehie Lee. 인천대학교 산업경영공학과 석사 과정
  • 김재곤 Jae-Gon Kim. 인천대학교 산업경영공학과
  • 유우식 Woo-Sik Yoo. 인천대학교 산업경영공학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.