earticle

논문검색

불법주정차 단속을 위한 지역(장소) 분류 및 활용 방안 : 경기도를 중심으로

원문정보

Location Classification and Its Utilization for Illegal Parking Enforcement : Focusing on the Case of Gyeonggi

한현, 최소연, 이소현

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Due to economic development and increasing gross national income, the number of automobiles continues to rise, leading to a serious issue of illegal parking due to limited road conditions and insufficient parking facilities. Illegal parking causes significant inconvenience and displeasure to people and can even result in accidents and loss of lives. The severity of accidents and their consequences, related to the growing number of vehicles and illegal parking, is escalating, particularly in the metropolitan areas. Consequently, efforts are being made to address this problem as a cause of social issues and come up with measures to reduce illegal parking. In particular, half of the public complaints in the metropolitan area are related to illegal parking, and the highest physical and human damage occurs in Gyeonggi. Thus, this study aims to use machine learning techniques based on data related to illegal parking in Suwon city, Gyeonggi, to categorize regional characteristics and propose effective measures to crack down on illegal parking. Additionally, practical, social, policy, and legal measures to decrease illegal parking in the metropolitan area are suggested. This study has academic significance in that it solved the problem of illegal parking, which is mentioned as one of the social problems that cause traffic congestion, by classifying regional characteristics using K-prototype, a machine learning algorithm. Furthermore, the results of this study contribute to practical and social aspects by providing measures to decrease illegal parking in the metropolitan area.

한국어

경제발전과 국민소득 증가로 자동차 수는 계속 증가하고 있으며 이는 한정된 도로 여건과 주차 시설 부족으로 불법주정차 문제가 심각한 상황이다. 불법주정차는 사람들에게 많은 불편과 불쾌감을 주며, 또한 사고로 인한 인명 피해로까지 이어지게 한다. 수도권을 중심으로 늘어나는 차량과 불법주정차로 인해 관련 사고 및 그 피해의 심각성은 날로 커지고 있다. 이는 사회문제 발생의 원인이 되면서 불법주정차를 줄이기 위한 대책 마련에 힘쓰고 있다. 특히, 국내에서는 수도권에 거주하는 사람들의 민원 절반이 불법주정차 문제이고, 이로 인한 물리적 피해와 인명 피해가 가장 많은 곳은 경기도이다. 그리하여, 본 연구에서는 경기도 수원시의 불법주정차 관련 데이터를 기반으로 머신러닝 기법을 이용하여 지역 특성을 새롭게 분류하고, 이를 기반으로 효과적인 불법주정차 단속 방안을 제안한다. 더불어, 수도권 지역의 불법주정차 문제를 감소하기 위한 실무적․사회적․정책 및 법률적 방안을 제시한다. 본 연구는 사회문제 중 하나로 언급되고 있는 도시의 교통체증을 증가시키는 불법주정차 문제에 머신러닝 알고리즘인 K-prototype을 이용하여 지역 특성을 새롭게 분류한 것에 학술적 의의가 있다. 또한, 본 연구의 결과는 수도권 지역의 불법주정차 문제를 감소하기 위한 방안을 제시함으로써 실무적 및 사회적 측면에 기여한다.

목차

요약
Ⅰ. 서론
Ⅱ. 개념적 배경
2.1 불법주정차와 단속 방법
2.2 선행연구
Ⅲ. 연구방법론
3.1 클러스터링 기법
3.2 데이터 수집
3.3 연구설계 및 분석절차
Ⅳ. 연구결과
Ⅴ. 결과 토의 및 시사점
5.1 연구 결과 토의 및 활용 방안
5.2 연구의 한계 및 향후 연구 방향
5.3 학술 및 실무적 시사점
참고문헌
Abstract

저자정보

  • 한현 Hyeon Han. 경기대학교 경영정보학과 학부연구생
  • 최소연 So-yeon Choe. 경기대학교 경영정보학과 학부연구생
  • 이소현 So-Hyun Lee. 경기대학교 산업경영정보공학과 조교수

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 5,100원

      0개의 논문이 장바구니에 담겼습니다.